Project A
Targeting Oncogenic Endocytosis to Combat Liver Cancer Plasticity and Therapy Resistance
Hepatocytes are metabolic factories and membrane trafficking machines that continuously filter nutrients and xenobiotics form the bloodstream, store glycogen and lipids, and release glucose, cholesterol, and protein products like albumin (Fig. 1A)(1). Genomic insults that transform hepatocytes can give rise to hepatocellular carcinoma (HCC), presenting the most common form of primary liver cancer and the 6th most common and 2nd most deadly malignancy worldwide (2, 3). HCCs are so deadly because they are often diagnosed at advanced stages when cancer cells have become metastatic and extremely therapy resistant, driving the frequent relapse after surgical resection or ablation of tumors, and rendering systemic therapies largely ineffective (4-10).
We discovered that HCC cells exploit the endocytic machinery to activate diverse developmental and survival pathways that promote epithelial-mesenchymal plasticity (EMP) and therapy resistance (11-15). Specifically, we found that HCC cells highjack protein interaction networks controlled by endocytic adaptor-associated kinase 1 (AAK1)–adapter protein 2 (AP2) complexes (Fig. 1B and 1C). We showed that in mesenchymal-like HCC and neuroblastoma cells, AAK1–AP2 complexes recruit specific cargo adaptors that control the endocytosis and trafficking of multiple EMP-driving receptor kinases (Fig. 1D)(15). Knocking down AAK1–AP2 complex members, including AAK1, the Ral-binding protein 1 (RALBP1), and the RalBP1-associated and EPS domain-containing proteins REPS1 and REPS2, reduced the expression of EMP markers (Fig. 1E), and sensitized HCC cells to cell cycle checkpoint kinase inhibition up to 20-fold, suggesting that AAK1-AP2 complexes may be targeted to inhibit EMP and survival signaling (Fig. 1F). MS-based proteome profiling and gene set enrichment analysis (GSEA) of RNAi lines confirmed that AAK1–AP2 complex knockdown deactivated multiple developmental pathways, including NOTCH, WNT/β-catenin, and JAK-STAT signaling, as well as PI3K-AKT and NF-κB survival pathways (Fig. 1G).
Mechanistically, how AAK1–AP2 complexes control these pathways remains unknown, hindering their development as therapeutic targets. We hypothesize that the oncogenic rewiring of AAK1–AP2 complexes alters the fate of multiple EMP-driving receptors by promoting receptor recycling over lysosomal degradation (Fig. 1H). Going forward, we will 1) use MS-based interactomics, CRISPR technologies, multiplex immunohistochemistry (IHC), and immunofluorescence (IF) to determine the molecular mechanisms of oncogenic AAK1–AP2 signaling in vitro and in vivo, and 2) develop proteolysis-targeting chimeras (PROTACs) that degrade AAK1-AP2 complex components and disrupt their oncogenic functions. Long-term, we seek to develop AAK1-AP2 complexes as drug targets to combat HCC metastasis and therapy resistance in the clinic.
References
1. Schulze RJ, Schott MB, Casey CA, Tuma PL, McNiven MA. The cell biology of the hepatocyte: A membrane trafficking machine. J Cell Biol. 2019;218(7):2096-112. doi: 10.1083/jcb.201903090. PubMed PMID: 31201265; PMCID: PMC6605791.
2. Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A. Hepatocellular carcinoma. Lancet. 2022;400(10360):1345-62. doi: 10.1016/S0140-6736(22)01200-4. PubMed PMID: 36084663.
3. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J, Finn RS. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6. doi: 10.1038/s41572-020-00240-3. PubMed PMID: 33479224.
4. Imamura H, Matsuyama Y, Tanaka E, Ohkubo T, Hasegawa K, Miyagawa S, Sugawara Y, Minagawa M, Takayama T, Kawasaki S, Makuuchi M. Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy. J Hepatol. 2003;38(2):200-7. doi: 10.1016/s0168-8278(02)00360-4. PubMed PMID: 12547409.
5. Bruix J, Qin S, Merle P, Granito A, Huang YH, Bodoky G, Pracht M, Yokosuka O, Rosmorduc O, Breder V, Gerolami R, Masi G, Ross PJ, Song T, Bronowicki JP, Ollivier-Hourmand I, Kudo M, Cheng AL, Llovet JM, Finn RS, LeBerre MA, Baumhauer A, Meinhardt G, Han G, Investigators R. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389(10064):56-66. doi: 10.1016/S0140-6736(16)32453-9. PubMed PMID: 27932229.
6. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Haussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J, Group SIS. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378-90. doi: 10.1056/NEJMoa0708857. PubMed PMID: 18650514.
7. Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, Baron A, Park JW, Han G, Jassem J, Blanc JF, Vogel A, Komov D, Evans TRJ, Lopez C, Dutcus C, Guo M, Saito K, Kraljevic S, Tamai T, Ren M, Cheng AL. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391(10126):1163-73. doi: 10.1016/S0140-6736(18)30207-1. PubMed PMID: 29433850.
8. Abou-Alfa GK, Meyer T, Cheng AL, El-Khoueiry AB, Rimassa L, Ryoo BY, Cicin I, Merle P, Chen Y, Park JW, Blanc JF, Bolondi L, Klumpen HJ, Chan SL, Zagonel V, Pressiani T, Ryu MH, Venook AP, Hessel C, Borgman-Hagey AE, Schwab G, Kelley RK. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. N Engl J Med. 2018;379(1):54-63. doi: 10.1056/NEJMoa1717002. PubMed PMID: 29972759; PMCID: PMC7523244.
9. Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, Kudo M, Breder V, Merle P, Kaseb AO, Li D, Verret W, Xu DZ, Hernandez S, Liu J, Huang C, Mulla S, Wang Y, Lim HY, Zhu AX, Cheng AL, Investigators IM. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med. 2020;382(20):1894-905. doi: 10.1056/NEJMoa1915745. PubMed PMID: 32402160.
10. Quirk M, Kim YH, Saab S, Lee EW. Management of hepatocellular carcinoma with portal vein thrombosis. World J Gastroenterol. 2015;21(12):3462-71. doi: 10.3748/wjg.v21.i12.3462. PubMed PMID: 25834310; PMCID: PMC4375567.
11. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178-96. doi: 10.1038/nrm3758. PubMed PMID: 24556840; PMCID: PMC4240281.
12. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14(10):611-29. doi: 10.1038/nrclinonc.2017.44. PubMed PMID: 28397828; PMCID: PMC5720366.
13. Golkowski M, Lau HT, Chan M, Kenerson H, Vidadala VN, Shoemaker A, Maly DJ, Yeung RS, Gujral TS, Ong SE. Pharmacoproteomics Identifies Kinase Pathways that Drive the Epithelial-Mesenchymal Transition and Drug Resistance in Hepatocellular Carcinoma. Cell Syst. 2020;11(2):196-207 e7. doi: 10.1016/j.cels.2020.07.006. PubMed PMID: 32755597; PMCID: PMC7484106.
14. Golkowski M, Lius A, Sapre T, Lau HT, Moreno T, Maly DJ, Ong SE. Multiplexed kinase interactome profiling quantifies cellular network activity and plasticity. Mol Cell. 2023;83(5):803-18 e8. doi: 10.1016/j.molcel.2023.01.015. PubMed PMID: 36736316.
15. Golkowski M, Lius A, Sapre T, Lau H-T, Moreno T, Maly DJ, Ong S-E. Multiplexed kinase interactome profiling quantifies cellular network activity and plasticity. Molecular Cell. 2023. doi: https://doi.org/10.1016/j.molcel.2023.01.015.